Let $a,b,c,d$ be integers such that $ad-bc=1$.For integers $u$ and $v$,define
\begin{equation} u'=au+bv\end{equation}\begin{equation} v'=cu+dv\end{equation}Prove that $(u,v)=(u',v')$.Proof:\begin{equation} u'c=acu+bcv\end{equation}\begin{equation} v'a=acu+adv\end{equation}So\begin{equation} u'c-v'a=v(bc-ad)\end{equation}So\begin{equation} v=v'a-u'c\end{equation}\begin{equation} u=du'-bv'\end{equation}So\begin{equation} (u,v)\geq (u',v')\end{equation}and\begin{equation} (u',v')\geq (u,v)\end{equation}So\begin{equation} (u,v)=(u',v')\end{equation}$\Box$
Remark 1:\begin{equation} \begin{vmatrix} a&b\\c&d\\\end{vmatrix}=1\end{equation}\begin{equation}
\begin{pmatrix} u'\\v' \end{pmatrix}=\begin{pmatrix} a&b\\c&d\\ \end{pmatrix}\begin{pmatrix} u\\v\\ \end{pmatrix}\end{equation} I think there is some relation to geometric meaning(Liear transformation).But I can't find it at present,maybe it is related to.
2.Maybe it is also related to complex numbers.For\begin{equation}
(a+bi)(-c+di)=(-ac-bd)+(ad-bc)i\end{equation}